
KES.U.84.7

AD-A264 959

Kestrel Institute

Very-High-Level Programming of

Knowledge Representation Schemes

by DTIr
Stephen Westfold ELECTEI

August 1984 MAY 201993

93-11120

This research is supported in part by the Defense Advanced Research Projects Agency Contract NOC014-81-
C-0582, monitored by the Office of Naval Research. The views and conclusions contained in this paper are
those of the author and should not be interpreted as representing the official policies, either ezpressed or
implied of KESTREL, DARPA, ONR, or the U.S. Government.

KESTREL INSTITUTE * 1801 PAGE MILL ROAD * PALO ALTO, CA 94304 a (415) 493-6871

aSTRIb-,..,. STATE _Mg ,

Approved fot public relea"e
Distributia UnU s

Acceci;on For

!L'i C fA(•

J.:h IC.t 0.O

B y

VERY-HIGH-LEVEL PROGRAMMING OF : "to
KNOWLEDGE REPRESENTATION SCHEMES

Availaiity Cedes

Stephen J. Westfold Aval and i or
Stanford University and Dist Special

Kestrel Institute, Palo Alto, CA 94304 4r
ABSTRACT BC allows programs to be factored into a do-rrip.

tion of the problem to be solved and a description of
This paper proposes building knowledge-based systeves the implementation or the solution. The implementation

using a programming system based on a very-high-level description can include schemes for representing entities

language. It gives an overview of such a programming of the problem description or solving particular types of

system, BC, and shows how BC can be used to implement sub-problem. BC can be used to define implementation

knowledge representation features, providing as examples, schemes for knowledge representation features such
automatic maintenance of inverse links and property in- scesfoknwdgrpeetainetusschs
auritomatc.Th ma ecifte anc e of inverse links and proper - property inheritance, inverse link maintenance, and proce-
heritance. The specification language of BC can be ex- dural attachment. The definitions of the first two or these
tended to include a knowledge representation language features are given later in this paper. BC is described
by describing its knowledge representation features. This fully in [Westfold, 1984).
permits a knowledge-based program and it- knowledge
base to be written in the same very-high-level language The specification language for BC is basically a mathe-
which allows the knowledge to i,. nc:e efficiently incor- matical language including logic, sets, relations, and func-
porated into the program as well as making the system as tions. This very-high-level language is convenient for
a whole easier to understand and extend, defining new language constructs in terms of existing con.

structs, and there is a mechanism for defining syntax for
the new constructs. Thus the system designer can define

§1 Introduction a language that is convenient for system users; the parser
converts this language into relations that are defined in

A knowledge-based system typically consists of a pro- terms of mathematical objects that have properties that
gram and a knowledge base that the program uses. The facilitate their manipulation (compilation) by BC. By use
knowledge base is expressed in a special knowledge repre- of manipulation such as equivalence transformation BC
sentation language that is essentially a very-high-level lan- can produce an implemented program whose structure is
guage that the program interprets. This paper describes quite different from that of the problem specification. In
a very-high-level language programming system, BC, and other words, convenient, uniform interfaces can be defined
shows how BC can be used to define knowledge repre- for the user and to facilitate the description of the different
sentation languages so that they can be efficiently com- components of the system, but the implementation can be
piled. Furthermore, the knowledge-based program itself non-uniform, crossing interfaces and taking advantage of
can be specified in BC using the same techniques with different views of the problem domain in order to produce
the same advantages or ease of comprehension and main- an efficient program.
tainability that are associated with the knowledge base. The ideas in this paper are being tested by using BC
This allows the knowledge base to be viewed as part of
the specification of the program, which is the key to itisuligteCH nweg-aedpormigss
efspcient incorporation into the program. In this way BC tem [Green et al., 1981]. CHI includes the following com-

ayeffi iewed incorporationintowee pompgrer, pre-prswsynC ponents, all of which make use of BC in their specification
may be viewed as a know/edge compiler, pre-processing and implementation: data structure selection, algorithm
knowledge so that it is used efficiently in the knowledge- design, parallel algorithm derivation, and project manage-
based system. ment, the database mianager, program analysis, finite

differencing, and BC itself. Many of these components are
useful in building knowledge-based systems, so CIII as a

This research is supported in part by the Defense Advanced Re- whole is better than just BC for building knowledge-based
search Projects Agency Contract N00014-81-C-0582, monitored by systems.
the Office of Naval Research. The views and conclusions contained
in this paper are those or the author and should not be interpreted
"a representing the official policies, either expressed or implied of
KESTREL, DARPA, ONR or the US Government.

344

12 Overview of BC The language used by BC is called V and it is the

language used throughout CHI. V was initially defined
BC is essentially a compiler that produces Lisp code by Phillips [Phillips, 1982) and has since been refined

from a specification in the form of logic assertions. The and extended by the CHI group. It contains a number
specification consists of three parts: the basic definition of integrated sub-languages: a first-order predicate logic
of the problem domain; the definition of auxiliary ob- language, VLogic, which is the basic specification language

jects that are needed in an efficient implementation of the used by BC; a rule language, VRL; a procedural language,
problem domain; and information about how the defining VP; and the target language Lisp.
assertions are to be used procedurally, It is convenient to

identify and use an intermediate rule language in going 2.1 Procedural Use of Assertions

from the logic assertion language to procedural Lisp. A
rule specifies an action (procedure) in terms of its precon- LAC compiles a specification written in VLogic asser-

dition (applicability condition) and postc'ndition (what is tions by converting each assertion into an inference pro-

true after its application). A rule consists of two logical cedure specialized to that assertion. The user specifies

formulas, written as which particular inference procedure should be used BC

provides three dimensions of choice for the type of in-

P - Q ference procedure. The first corresponds to the general
form of the assertion that is used; either an implication

where P is the precondition and Q is the postcondition.

(Note that ' - ' is a procedural construct and '=*' is the P =z q

symbol for implication.) or an equality (with equivalence considered a special case

The part of BC that compiles the logic assertion oi equality)
specification into rules is ca'led the Logic Assertion
Compiler (LAC). From an assertion, which could be used P~q"

to make many different inferences, and instructions stat- Each of the general forms may have a precondition which

ing which particular inference and in what context, LAC is written as the antecedent of an implication with the

produces a rule that is a specification of that particular form as the consequent. For example: r =* p=q can be

inference. The part of BC that •ompiles rules into Lisp considered an equality with precondition r. It may also

is the Rule Compiler (RC). It works by a process of step- be treated as an implication.

wise refinement similar to other transformational systems The second dimension corresponds to the direction of

such as PECOS [Barstow, 19791, TI (Balzer, 19811, and use of the general form: from left to right or right to
[Burstall and Darlington, 1977[. At intermediate stages of left. For implication, the former corresponds to forward

refinement the program contains a mixture of constructs or data-driven inference and the latter to backward or
from very-high-level to low-level, so a wide-spectrum Ian- goal-directed inference. Considering the assertion as a
guage must be used that includes all these constructs in a constraint, the former corresponds to enforcing the con-
unified framework. straint and the latter to using or taking advantage of

the constraint. An equality is commutative, but typically
there is a directionality associated with each one. For ex-

VLogic (Logic Assertions) ample, a function f can be defined using an equality of

the form f(z)=def.

The third dimension is choice of compile-time versus
LAC Logic Assertion Compiler run-time use of an assertion. Use of an assertion at com-

pile time provides the possibility for circumventing the
clean specification-level interfaces and producing efficient,

VRL (Rule tangled code. The result of compiling an assertion for
compile-time use is a procedure that affects the compila-

tion of other code.

An important use of assertions at compile time is to
RC Rule Compiler maintain and use them as constraints. Constraint incor-

poration is done at the stage of compilation where a proce-
dure is expressed as a rule. Rule compilation involves us-

Ling the rule to form a statement in logic of the relationship

between the computation states before and after the rule
application, and then producing a procedure that, given
an initial state, will produce a new state that satisfies

Figure 1. Structure of BC the relationship. The intermediate statement in logic is a
convenient form for performing inference to incorporate
constraints stated in logic assertions.

345

Use of an assertion at run time requires converting compile-in-line form (Forward)

it to the run-time constructs available in the target en- (Add in-line code to maintain the constraint)

vironment. Therefore we need to consider two models compile-transform form

of computation: the model of computation as inference (Transform form to an equivalent form)

at the specification level and the Lisp model which is
basically a recursive function model. This means that For convenience the forms may be referred to by their
any run-time inferences have to be put into a functional primary function if this is an unambiguous referent.
form. Goal-directed, run-time inference can be imple-
mented efficiently using Lisp functions. This may involve These are the basic meta-level annotations. Internally,

adding an extra definition so that the goal is in the form they are simply meta-level properties of assertions- New

of a function call. annotations can be defined in terms of these basic ones
using logic assertions at the meta-level from -hich BC can

In order to implement forward-inference procedures we produce demons that, given the new annotation, generate

need some extra machinery in the target environment, the equivalent basic annotations.

The procedures need to be attached somewhere so that

they are triggered at the appropriate time, and they need
Lo be able to store the vazc: that they compute sc t.at
the values are found when wanted, This can be done 2.3 The Implementation of BC
with a database of (function, argument, value] triples
that are indexed by the function and argument. BC BC is written primarily in its own languages-Vtogic
uses a database that stores objects (the things that may and VRL. A basic version of RC was written in Lisp and
be function arguments) as mappings from functions to then the VRL specification of RC was compiled and this
values. Functions that are treated in this way are called version replaced the Lisp version. The implementation
properties. Storing the value of a property in the database of LAC is at the stage where it can compile assertions
may trigger attached forward inference procedures which given in the exact form needed for the particular use of
may store values for other properties. When the value it. The part of LAC that preprocesses assertions to get
of a property is needed, the database is examined to see them into the correct form has been designed and is in the
if there is a stored value, otherwise a Lisp function for process of being implemented. BC has been developed in
computing the value is called, if there is one. Interlisp [Teitelman and Masinter, 1981) on a DEC 2060

machine and then in Zetalisp [Weinreb and Moon, 1981]
using the Interlisp Compatibility Package on Symbolics

2.2 Specifying How to Use an Assertion 3600 machines.

The ways an assertion is used are specified by attach-
ing simple meta-assertions to the assertion. This section
describes the basic options provided by BC. §3 Example Implementations of Knowledge

Run-time use is encapsulated as a function. For for-

ward use it is necessary to specify the triggering form that The examples begin with a simple database that only

causes the function to be called. For backward use it is provides storage and retrieval of binary-relation triples.
necessary to specify the name of the function whose value This is used as the basis for defining knowledge repre-
is to be computed: sentation features. The examples presented a.e ft, main-

tepance of inverse links and property inheritance. Other
trhggered-by forms)form 2, . features that have been specified are specialized treatment

(the form1 are the triggering forms) of transitivity, attached procedures, and memoing of com-

computes fn1, fn2, .. (Closed functions) puted properties.
(the fn, are the functions to be computed) 3.1 Maintaining Inverse Links

Other options are:

memo (Save computes values in database) The first example is the task of maintaining inverse

check (Give an error if assertion violated) links in a database. This requires that whenever /(r-==y
is stored in the database, /-'(y)=z is also stored. The
language used is introduced informally as necessary. The

For compile-time use it is necessary to specify whether basic assertion is:
the assertion is to be used as a constraint for optimiza- inuerse(f)=g A one-to-one(f) =
tion or as a constraint to be maintained (or both), or for I(z) -i
transforming some forms into equivalent ones.

compile-optimIse form (Backward) By convention, unbound variables are universally
(Use the assertion to remove redundant tests) quantified, so f, g, 1 and y are universally quantified over

(e this assertion.

346

3.1.1 Maintaining the Constraint with a Run-time that makes p true is being compiled, add extra code to
Procedure make the assertion true.

One way of maintaining the constraint is to attach The compile-time rule procedure for adding this in-line

a demon function that is executed to add the inverse code is:

whenever a property is stored. This can be specified as a=ASatis6Y(f(z)=y)
follows: A inverse(f)=q A one-to-one(f)

inverse(f)=g A one-to-one(f) = a=.Satisfy(f(z)=y A g(y)=z)'

f(x)-- g(y)=z which, for example, transforms Satisfy(lhs(m)=n)
triggered-by f(x)=y into Satisfy(lhs(m)=n A lhs.of(n)= m) where

where "triggered-by p" is a meta-level annotation that inverse(lhs)=lhs-.of. The forms in single bold quotes act
means whenever p is asserted (stored) the assertion should as patterns that on the left-hand side match expressions
be made true. trid on the right-hand side cause new expressions to be

Lonstructed. Satisfy(p) means change the state to make
LAC produces the following demon from this p be true. It is used as an intermediate form in compil-

specification: ing rules, that is later transformed into code to make the

trigger f(z)=y desired change of state.
inverse (f)=g A one-to-one(f) A - DB(g(yj)=z) The constraint may also be used to optimize a test of

- DB(g(y)=z) f(z)=y A f-'(y)=z to a test of just f(z)=y. It may

This uses a generalized demon construct which con- also be used to replace f(z)=y, by f-'(y)=r, which is
sists of a triggering event-in this case the assertion that useful, for example, when another rule is looking for z as
f (z)=y, and a procedure body-in this case a rule whose a function of y.

applicability condition (left-hand side) is inverse(f)=g A
one-to-one(f) A -DB(g(yJ)=z) and whose action is to
make its right-hand side DB(g(yi)=x) true in the new
state. DB(z) is true if and only if z is stored in the
database. The DB predicate is used to distinguish some- This section shows how an implementation scheme can
thing that is true because it is explicitly stored in the be described by stating a single invariant and the ways
database from something being true because it is im- that it is to be maintained and used. BC derives code for
plied by the database. Thus the condition -'DB(g(y)=z) each of the procedures that maintain or use the invariant
prevents the rule from applying if its action would be from the single specification of the invariant, so all the
redundant. This prevents the possibility of infinite and procedures are consistent.
ineffectual forward chaining.

The type of property inheritance in this example is all
RC compiles the rule into the following Clisp code: members of a set having the same value for a property.

(if (db-get f 'one-to-one) For example, if all elephants are the color grey, and Clyde
then (let ((g (db-get f 'inverse))) is an elephant, then we can deduce that Clyde is the color

(if (NEQ (db-get y g) x) grey. Using VLogic these statements are:
then (db-put y g x)))) if z E elephants =* color(x)=grey

which is executed whenever a property is stored in the and Clyde E elephants
database. (db-get x y) and (db-put x y z) are functions then the database system should deduce that
for retrieving from and storing into the database, respec- color (Clyde)=grey
tively. Basically what RC does in this simple example when asked for color(Clyde).
is decide the order in which conjuncts are used and how
each conjunct is to be used-either tested or used to bind A scheme for doing this is for each property that has
a variable, this inheritance behavior (e.g. color), to introduce a cor-

responding property that applies to the set as a whole
(e.g. color-of-all) and connect these two properties by the

3.1.2 Maintaining the Constraint with In-line Code property all-prop (so all-prop(color)=color- of-al,).

An alternative way to maintain the constraint is to add This scheme can be described by the invariant:
in-line code, specified as follows:

inverse(f)=g A one-to-one(l) = (ZE S s p(x)=p-of-a,!(S)) - all-prop(p)=p-of-all

f(z)=yv gy~
compile-in-line I(x)=y In the following, I refer to this as the "scheme

where "compile-in-line p" means that whenever code invariant." We want to use this invariant to

347

compute p(z) when applicable. For example, the resulting demon is stated:
value of color(Clyde) is color-of-all(elephants) because trigger z ES =* p(z)=p-of.oAl(S)
all-prop(color)=-color- ofall. To maintain the invariant - all-prop(p)= p-of-all.
we need to update all-prop and the instances of p-of-all.
For example, when zE S=*Color(z)=color-of-all(S) is as-

* serted, we need to make all-prop(color)=•.color-of-all, and
later, when z E elephants =* color (-)=grey is asserted, we 3.2.3 Maintaining Inheritable Properties
need to make color-of-all(elephants)-=grey. These uses
of the assertion are expressed by saying that it is used The third procedure is necessary to store p-of-all
to compute p and used to maintain all-prop and p-of.all. when suitable universal statements are made. For
The complete specification of this in BC is: example, when x Eelephants =* color(z'=grey is as-

serted, it adds color-of-all(elephants)=.grey (assuming
(z E S =* p(z)=p-of-all(S)) =_ all-prop(p)=p-of-all that all-prop(color)= color- of-all).

computes p LAC converts the scheme assertion into the form q =*
triggered-by xE S = p(z)=I-, p-of.all(S)=d by introducing a new variable v whose

zE S •= p(z)=p-of-alt(S) value is equal to p(z) and p-of-all(S) in order to split

the equality p(z)-p-of-all(S). This converts the scheme
Before looking at how each of the three procedures invariant:

is derived from this specification, we mention an alter-
native, similar scheme to emphasize that this constraint X E S =4 p(z)=p-of-all(S) = all-prop(p)=p- oj...p

could be used in different ways: instead of comput'ng p into
when needed it could be maintained. In this case, when
Clyde E elephants is stored then color(Clyde)-=grey is also all-prop(p)-p-of-al A ((ES) p(z)=-)
stored. = p-of-al(S)=v.

Choosing the second conjunct as the trigger gives the
3.2.1 Computing an Inherited Proper~y following demon procedure:

The first case is deriving a partial procedure for com- trigger z E S =* p(z)=v
puting p(z) from the scheme invariant, for example com- all-prop(p)=p-of-all -- p-of-all(S)=•.
puting color(Clyde) as color-of-all(elephants). First LAC
converts the scheme invariant to the form r =; p(z)=d by
treating the equivalence as a right-to-left implication and
merging the nested implications into a single impJication 3.3 Default Inheritance
with a conjunction as antecedent:

In many AJ systems a variation of the above scheme is
(z E S =* p(z)=p-of-all(S)) _= all.prop(p)=p-of-all implemented in which a specific value of property for an

becomes individual may be given which conflicts with the value for
the property given by the sets the individual is a member

all-prop(p)- p-of-all A z E S • p(z)=p-of-all(S), of. In other words, the property value stored on the set

From this, LAC produces the partial function: is a default value to be used only if a specific value for a

function p(x) particular individual is not known. We can express the
all-pro p(p)= p-of-all A zE $ default scheme in our logic using the DB predicate. The

-* malue(p-of-all(S)) default inheritance scheme is basically the same as the
direct scheme with an extra condition:

where value(z) means that z should be returned as the

value of the function. (DB(p(x)=.j) A zES =:t p(r)= p-of-most(S))
most-prop (p)= p-of-most

where J_ means undefined.

3.22 Maintaining Inheritance Links In fact, typically a stronger condition is used so that if

there are two sets with a most-prop value with one set a
The second procedure is necessary to ensure subset of the other, then the smaller set is used. This can

that anl-prop is stored whenever a relevant univer- be expressed by adding the further condition -, 3S, [S Cg
sal statement is made. For example, when S A z E Si A p-of-most (Si) # .]. The procedures neces-

z E S =* color(z)-=.color-of- all(S) is asserted, it makes
ali-prop(coior)=eolor-Of-all, sary to carry out this scheme are all derived similarly to

the ones above.

This involves using the equivalence of the scheme in-
variant as a left-to-right implication, and using the left-
hand side as a triggering condition for the procedure. The

348

§4 Related Work [Genesereth et al., 1983] Michael Genesereth,Russell Greiner, and Dave Smith. "A Meta-level

The specification language for BC is logic, which can Representation Syjstem,' Memo HPP-83-28, Computer
be used to express knowledge. However, the main utility Science Department, Stanford University, December 1980.
of BC with respect to knowledge representation, is the [Green et al., 1981] Cordell Green, Jorge Phillips,
facility with which it allows knowledge representation Stephen Westfold, Tom Pressburger, Susan Angebranndt,
schemes to be described and implemented. Knowledge Beverly Kedzierski, Bernard Mont-Reynaud, and Daniel
representation schemes may be defined that have no Chapiro, "Towards a Knowledge-Based Programming
relation to logic. However, the ability of BC to use System," Kestrel Institute Technical Report KES.U.81.1
"logic encourages the specifier to relate knowledge repre- March, 1981.
sentation schemes to logic. For example, the formulation
of property inheritance given in section 3.2 is in terms [Green and Westfold, 1982] Cordcll Green, Stephen
of sets, quantification, and relations between properties. Westfold. "Knowledge-Based Programmninq Self Applied, "
A similar scheme inheriting properties from prototypical in Machine Intelligence 10. Ellis Forward and Halsted
elements is a little more difficult to express because the Press (John Wiley). 1982.
relation to logic is less direct. Hayes and Nilsson, amongst [Hayes, 1979] P. J. Hayes. "The Logic of Frames, " in B.
others, have argued that knowledge representation Ian- L. Webber and N. J. Nilsson (eds) Readings in Artificial
guages should be analyzed using logic in order that they Intelligence. Tioga Publishing Company, Palo Alto, Ca.,
may be better understood and the different languages 1979.
compared more easily [Hayes, 1979], [Nilsson, 1980]. BC
allows logic to be used as a tool for synthesis. [Nii and Aiello, 1979] H. Penny Nii and Nelleke

Other systems for building knowledge-based systems Aiello. "AGE (Attempt to Generahze): A Knowledge-

are EMYCIN [van Melle, 1980], AGE [Nii and Aiello, Based Program for Budding Knowledge-Based Programs,"

1979], LOOPS [Stefik et al., 1983] and MRS [Genesereth in Proceedings of the Sixth International Joint

et al., 1983]. These systems supply a set of facilities Conference on Artificial Intelligence. Tokyo, Japan,

that are useful for building knowledge-based systems. BC 1979, pp. 645-655.

takes a more programming-oriented view in that it al- [Nilsson, 1980] Nils J. Nilsson, Principles of A.rtificial
lows useful facilities to be programmed easily. It may Intelligence. Tioga Publishing Company, Palo Alto, Ca.,
be useful for a system builder to draw on a library of 1980.
knowledge representat'in features specified in BC, but [Phillips, 1982] Jorge Phillips, Self-Described
these may be combined flexibly and modified as needed Programming Environments: .n Application of a
for the particular system and tightly integrated because of Theory of Design to Programming Systems. Ph.D

their specification in BC. MRS, like BC, aims to decouple Thesis, Electrical Engineering and Computer Science

the specification language of the user from the implemen- Desis, E tal Enivering a C uS.

tation of the system. This goal is in contrast to knowledge Departments, Stanford University, 1983.

representations such as semantic networks and frame (Stefik et al., 1983] Mark J. Stefik, Daniel C.
systems where the specification language used is more Bobrow, Sanjay Mittal and Lynn Conway. "Knowledge
closely linked to the actual implemented representations. Programming in Loops," in The Al Magazine Vol. 4
MRS provides the user with a few implementation choices No. 3, 1983, pp. 3-13.
whereas BC provides tools for the user to specify how to (Teitelman and Masinter, 1981] Warren Teitelman
compile knowledge. and Larry Masinter, "The Interlisp Programming

Environment," Computer, Vol. 14, 4, April 1981.
References [van Melle, 19801 William van Melle, A Domain-

independent system that Aids in Constructing
Knowledge-based Consultation Programs. Ph.D.

[Balzer, 1981] Robert Balzer "Transformational Thesis, Computer Science Department, Stanford
Implementation: An Example," IEEE Transactions on University, 1980.
Software Engineering, January, 1981, pp. 3-14. [Weinreb and Moon, 1981] Daniel Weinreb and David

[Barstow, 19791 David Barstow. Knowledge-Based Moon. Lisp Machine Msnual. Symbolics, Chatsworth,
Program Construction. The Computer Science Ca., 1981.
Library, Programming Language Series. Elsevier-North [Westfold, 1981] Stephen Westfold "Documentation for
Holland Inc. New York. 1979. TINTEX, " Internal Report. Kestrel Institute. Palo Alto,

[Burstall and Darlington, 1977] Rod M. Burstall and Ca., 1981.
John Darlington. "A Transformation System f/or Develo- (Westfold, 19841 Stephen Westfold, Logic Specifi-
ping Recursive Programs," in Journal of the ACM. Vol. cations for Compiling. Ph.D. Thesis, Computer
24 No, 1. January, 1977. pp. 44-67. Science Department, Stanford University, 1984.

349

